

Ruby's influence
over the Elixir language

by Paolo Montrasio
paolo.montrasio@connettiva.eu
http://connettiva.eu/rubyday

Download this presentation from
http://connettiva.eu/rubyday
Plus links to elixir and phoenix resources
Plus three HOWTOs to install erlang, elixir,
phoenix.

Phoenix demo app at
https://github.com/pmontrasio/phoenix-demo-app

This presentation is licensed under the CC-BY-SA
4.0 license
https://creativecommons.org/licenses/by-sa/4.0/
Images are licensed under their original license as
stated in the notes of each page.

http://commons.wikimedia.org/wiki/File:Pomegra
nate_Seeds.JPG
Public domain

This speech is about things that look like other
things but are not those things.

They look like rubies but they are not rubies.
They are pomegrate seeds.

http://commons.wikimedia.org/wiki/File:Pomegra
nate_Seeds.JPG
Public domain

This looks like Ruby.
It might be Sinatra or some other lightweight
framework.

Is this Ruby?

http://commons.wikimedia.org/wiki/File:Ruby_logo
.png
Yukihiro Matsumoto, Creative Commons
Attribution-Share Alike 2.5 Generic

No, this is Elixir

Logo from http://elixir-lang.org/
© Plataformatec

Elixir is a language built on the top of the Erlang
VM

Logo from http://elixir-lang.org/
© Plataformatec

Logo from
http://commons.wikimedia.org/wiki/File:Erlang_log
o.png
Public domain

So we have a language that looks like Ruby, but
actually is Elixir, which deep inside is Erlang.
Puzzled?

https://www.flickr.com/photos/thesheriff/11213749
1/
Andrew Mitchell
CC BY SA 2.0 (cropped)

Probably not :-)

Logo from http://elixir-lang.org/
© Plataformatec

Logo fom
http://commons.wikimedia.org/wiki/File:Erlang_log
o.png
Public domain

Let's start with some simple syntactical elements.
Comments are like in any other Unix based
scripting language.
Parentheses are optional.
No end of statement terminator.
The C-like logical operators are what we expect.
They work on any data type.
The English-worded logical operators work only on
booleans.
There is a interactive interpreter, iex, which is like
irb.

Conditionals are like the Ruby ones, with the
exception of the do after the condition.
One liners are quite different.
No postfix notation.

Conditionals are expressions. Their true form is

if (condition, do: (code block))

if condition do
 …
end

is syntactical sugar.
Actually if and unless are macros (see defmacro).

http://elixir-lang.org/getting_started/5.html

Elixir's atoms and Ruby's symbols are basically the
same thing and have the same syntax.

String interpolation is the same.

Still quite Ruby-like up to now.

http://commons.wikimedia.org/wiki/File:Ruby_logo
.png
Yukihiro Matsumoto, Creative Commons
Attribution-Share Alike 2.5 Generic

Differences

So what are the big differences with Ruby?

http://commons.wikimedia.org/wiki/File:Apples,_P
ears,_Oranges.jpg
Mark and Allegra Jaroski-Biava
Creative Commons Attribution-Share Alike 2.0
Generic (cropped)

Elixir is functional. Biggest difference!

http://wall.sf.co.ua/id91895

f(x) y→

A function takes one or more arguments and
returns one or more values.

It never changes its arguments.

It only returns new values.

OO languages have methods that change the state
of the object they are called upon.
Functional languages don't do that.

So the other big difference is: change.

http://pixabay.com/en/change-money-coin-coins-
20272/
CC0 Public domain

Actually, the lack of change. Unmutability.

http://pixabay.com/en/change-money-coin-coins-
20272/
CC0 Public domain

Variables are immutable.
You can't change the value of a variable once you
assign a value to it.
Well, did I mutate the value of x? Not really.

Let's try it in Erlang.
Variables are immutable in Erlang too. Same virtual
machine. You try to reassign a variable: error!

What did Elixir do? For our convenience it forgets
about the original x variable and lets us use the
same name for the variable at lines 2 and 3. But it
is a different variable. Mutability is an illusion.

Adding a ^ (the pin operator) as in ^x makes the
variable completely immutable.

Being functional is very different from OO.
Think in reverse.
It's function2(function1(value), instead of
value.method1.method2
Very nice nested function calls, or not so nice?

Tough luck but fortunately this is not the way to do
it

http://commons.wikimedia.org/wiki/File:SadCat1.j
pg
Dimitri Torterat (Diti) for original photo
Túrelio for derivative
Creative Commons Attribution-Share Alike 3.0
Unported (cropped)

We use the pipe operator to compose functions in
a natural way.

There is no need for loops.
A loop is made by calling the same function
recursively until we reach a return condition.
How about stack overflows? The language
automatically performs tail call optimization
http://stackoverflow.com/questions/310974/what-i
s-tail-call-optimization
No state to store == no frames on the stack.

http://elixir-lang.org/getting_started/9.html

Functions have somewhat similar conventions to
Ruby's methods.
Functions that end with ? return booleans.
Functions that end with a bang! raise an exception
when they fail.

Third difference.
The assignment is not an assignment.
It's a match operator.

https://openclipart.org/detail/167818/not-equal-to
-4-by-dripsandcastle
Public Domain

It means "Do the values on the left side match the
values on the right?" If positive, the interpreter
assigns unbound variables on the left to the values
they match on the right.
That's why x = 3 behaves in a natural way.
x = x + 2 won't work in Erlang.

In 1 c can match :cont
In 2 :stop can't match c, because c has value :cont
and :stop is an atom so it's bound by definition.

When c becomes :stop the match in 3 succeeds.
This is a common way to check for return values
from functions and this is why many functions
return atoms.
http://elixir-lang.org/getting_started/4.html

By the way, {we, introduced, tuples}

Reading a file has the same syntax as in Ruby.
The case statement works with matches.
Check the cond statement too.

:library.function is a way of calling an Erlang library,
much like what we can do in JRuby with Java
libraries.

:httpc.requests and File.open return tuples.
If those tuples don't match the ones on the left the
program halts immediately.

Pattern matching is the reason why exceptions are
rarely used in Elixir but check try catch rescue
throw raise after at
http://elixir-lang.org/getting_started/17.html

Strings

Fourth difference: strings.

http://commons.wikimedia.org/wiki/File:Piano_stri
ngs_6.jpg
Alan Levine
Creative Commons Attribution 2.0 Generic
(cropped)

Double quotes and single quotes are different.

Lists of characters can be built from strings and
strings can be built from lists of characters.

Square brakets define lists.

Interpolation works even in single quotes.

Concatenation has a ugly syntax: <> which is the
concatenation operator for binary data

<<0, 1>> <> <<2, 3>>

Ugh!

http://elixir-lang.org/getting_started/6.html

Lists and arrays

http://en.wikipedia.org/wiki/File:Beer_Cans-1.jpg
Visitor7
Creative Commons Attribution-Share Alike 3.0
Unported (cropped, darkened)

[] enclose lists.

Concatenation operators are not overloaded. They
can be quite ugly. Remember the one for strings.

Lists have a head and a tail.
Very Lispy

So many more things to know about Elixir

http://www.flickr.com/people/jamescridland/
James Cridland http://james.cridland.net/
CC BY 2.0 (cropped)

Keyword lists
Maps (Ruby's hashes)
http://elixir-lang.org/getting_started/7.html

Annotations to insert tests and documentation into
the code.
http://elixir-lang.org/getting_started/14.html
http://elixir-lang.org/getting_started/mix_otp/9.htm
l

Modules.
http://elixir-lang.org/getting_started/8.html

Structs.
http://elixir-lang.org/getting_started/15.html

Comprehension.
http://elixir-lang.org/getting_started/18.html

But time is running out

http://commons.wikimedia.org/wiki/File:Time_is_ru
nning_out.jpg
Sergey Galyonkin
Creative Commons Attribution-Share Alike 2.0
Generic (cropped)

Getting serious
(Mr Algorithm)

Statue of Mu ammad ibn Muū saū al-Khwaū rizmiū at ḥ
Khiva, Uzbekistan.
One of the fathers of algebra. His book “On the
Calculation with Hindu Numerals” was translated
into Latin as “Algoritmi de numero Indorum” mixing
the transliterated author name with the title. By
confusion we are talking about algorithms now.

http://en.wikipedia.org/wiki/Mu
%E1%B8%A5ammad_ibn_M%C5%ABs
%C4%81_al-Khw%C4%81rizm%C4%AB

Author's photo of the statue in Khiva, Uzbekistan.
CC BY-SA 4.0

A client/server.
The server receives tuples {client, message} and
puts them to stdout.
Then it loops on itself.
Tail recursion to the rescue!
The client spawns the server process, sends its
own id and a message, it waits for the response.
http://elixir-lang.org/getting_started/11.html

To compile:
$ elixirc spawn.exs
It generates Elixir.Server.beam
Then you can use the Server module in iex
$ iex
> pid = spawn fn -> Server.echo end
> send pid, {self, “Hi”}
> ...

$ git clone
https://github.com/phoenixframework/phoenix.git
$ cd phoenix
$ mix do deps.get, compile
From this directory! Important!
$ mix phoenix.new my_project ~/my_project
$ cd ~/my_project
$ mix do deps.get, compile
$ mix phoenix.start
http://localhost:4000
$ mix help # rake -T
$ mix phoenix.routes # rake routes
mix deps.clean –all is nice to know
Other web frameworks
https://github.com/elixir-web/weber # Rails like
https://github.com/dynamo/dynamo # Sinatra like

$ git clone
https://github.com/phoenixframework/phoenix.git
$ cd phoenix
$ mix do deps.get, compile
From this directory! Important!
$ mix phoenix.new my_project ~/my_project
$ cd ~/my_project
$ mix do deps.get, compile
$ mix phoenix.start

http://localhost:4000

The structure of a phoenix application.

https://github.com/phoenixframework/phoenix#ch
annels

DIY

Young framework.
Many tools still lacking.
Lots of DIY.

SElephant
http://zh.wikipedia.org/wiki/File:Basic_DIY_Tools.jp
g
Attribution-ShareAlike 3.0 Unported (cropped,
darkened)

Some rough edges.
The database must be added manually.

Migrations and the DB adapter must be added.
Use the ecto database wrapper.

https://github.com/elixir-lang/ecto
http://elixir-lang.org/docs/ecto/

We have:
belongs_to
has_many
DSL for select / insert / update / transactions but
not for creating / dropping tables

We don't have yet:

DSL in migrations

Routes are restful and can be nested

We have scopes and static routes.

The usual restful methods functions in controllers

No Devise

DIY with the cookie
session store

No authentication frameworks yet but phoenix has
a cookie based session store that can be used to
store the user id
https://github.com/elixir-lang/plug/blob/master/lib
/plug/session.ex

See my implementation with a plug in the github
demo app.

SElephant
http://zh.wikipedia.org/wiki/File:Basic_DIY_Tools.jp
g
Attribution-ShareAlike 3.0 Unported (cropped,
darkened)

There is no ActiveRecord magic to define
attributes from the database schema.

There are validations (with ecto).

A look to the functions:

1) Strings passed to Erlang must be converted to
char lists.

2) The ^ pin operator is important inside Ecto
queries. Anything without a pin is a variable of the
query, not variables of the function.
It reminds of how to inject local variables inside a
squeel block in Ruby.

The example has no error checks on params and
on the result of Repo.get

_params with the underscore is the idiomatic way,
sorry for that.

Authentication and AdminsOnly are two plugs (kind
of before actions) that implement authentication
and authorization. Custom built for this application.
Check the code on github.

The equal in <%= if cond do %> is important

The default .eex which is similar to .erb
Haml and Slim are available too.
https://github.com/phoenixframework/phoenix#tem
plate-engine-configuration

if blocks return a string. Without the equal in <%=
the if will execute but its return value (the HTML)
won't be rendered.

The for loop is actually a comprehension.
Flash is set in controllers like this

def destroy(conn, _params) do
 fetch_session(conn)
 |> delete_session(:user_id) # this is to logout
 |> Flash.put(:notice, "Logout successful")
 |> redirect Router.pages_path(:index)
end

 Is it any better?
Is this Elixir better than Ruby?

http://en.wikipedia.org/wiki/File:Benjamin_G_Bow
den_-_Spacelander_Bicycle.jpg
Brooklyn Museum
CC BY 3.0 (cropped)

Hard to tell but Elixir has a definite advantage
when parallelism is important.

It accesses all the cores of the CPU.

It has very light weight processes. You can have
thousands of them running inside your application.

Consider changing your approach: create
processes to store state and make them exchange
messages.

Thanks to a Ruby like syntax is an easy entry point
into the world of functional languages.

10 REM SINCLAIR ZX81 KEYS
20 PRINT “MY FIRST COMPUTER”
30 PRINT “NOT TOO FUNCTIONAL BUT FUNNY”

en.wikipedia.org/wiki/File:Sinclair-ZX81.png
Evan-Amos
CC BY-SA 3.0 (extracted keys from original image)

http://connettiva.eu/rubyday

Paolo Montrasio
paolo.montrasio@connettiva.eu

CC-BY-SA 4.0 plus the original licences of the images

Download this presentation from
http://connettiva.eu/rubyday
Plus links to elixir and phoenix resources
Plus three HOWTOs to install erlang, elixir,
phoenix.

Phoenix demo app at
https://github.com/pmontrasio/phoenix-demo-app

This presentation is licensed under the CC-BY-SA
4.0 license
https://creativecommons.org/licenses/by-sa/4.0/
Images are licensed under their original license as
stated in the notes of each page.

http://commons.wikimedia.org/wiki/File:Pomegra
nate_Seeds.JPG
Public domain

